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Floer cohomology
Motivation & Heuristics

(M2n, ω) symplectic manifold of dimension 2n.
L ⊂ M is a Lagrangian submanifold if ω|L = 0 and dimL = n.

▶ L ⊂ T ∗L, T ∗
q ⊂ T ∗L for any q. More generally, if α ∈ Ω1(L)

is a closed 1-form, its graph {(q, αq) : q ∈ L} is a Lagrangian
submanifold.

▶ For b a regular value, µ−1(b) is a Lagrangian in a toric variety
with moment map µ : M2n → Rn. It is possible to consider
generalizations of this to non-abelian group actions.

▶ Rn ⊂ Cn is Lagrangian, more generally, the real part of a
complex algebraic variety defined by real equations is isotropic
and can be Lagrangian if it has the right dimension.
RPn ⊂ CPn. The real solutions to x20 = x21 + x22 + . . . x2n is a
Lagrangian sphere in the complex quadric hypersurface in
CPn defined by this equation.



-Two major questions in symplectic topology:

▶ What are the topological restrictions on Lagrangian
submanifolds in a given symplectic manifold M?
Sample result: (Gromov) There is no closed Lagrangian
submanifold L ⊂ R2n with H1(L) = 0.

▶ Can two Lagrangians be displaced from each other by
Hamiltonian isotopy? If not, what is the minimum number of
interesections?
Sample result: (Floer) Suppose that L is Hamiltonian
isotopic to L′ and L ⋔ L′, ω|π2(M,L) = 0 then

|L ∩ L′| ≥
∑
i

rkH i (L;Z2)

Recall, if H : M × [0, 1] → R is a time-dependent Hamiltonian
function, we can consider its flow ϕt which is the flow of the vector
field defined by ω(XHt , ·) = dHt . Note that ϕ0 = Id . ϕt is called a
Hamiltonian isotopy. Two Lagrangians L, L′ are called Hamiltonian
isotopic if there exists a Hamiltonian isotopy such that L′ = ϕ1(L).



Draw a picture of torus and discuss Floer’s result



Floer cohomology

The proof of Floer’s theorem is a consequence of the existence of
Lagrangian Floer cohomology and its basic properties.

▶ Given two Lagrangians L, L′ such that
ω|π2(M,L) = ω|π2(M,L′) = 0, there exists a cochain complex
denoted by CF ∗(L, L′) (over some field Λ) whose
quasi-isomorphism type is an invariant of L and L′ up to
Hamiltonian isotopy.

▶ When the Lagrangians L and L′ are transverse, this complex is
generated by the intersection points in L ∩ L′.

▶ When L = L′, there exists a quasi-isomorphism
CF ∗(L, L) ≃ C ∗(L).



Floer cohomology
Semi-infinite dimensional Morse theory

Ω(L, L′) = {γ ∈ C∞([0, 1],M) : γ(0) ∈ L, γ(1) ∈ L′}

ω̂(γ)ξ =

∫
ω(ξ, γ̇)dt

where ξ is a vector field along γ.
Since L, L′ are Lagrangian, this is a closed 1-form on Ω(L, L′) in
the sense that if u : S1 × [0, 1] → M is a contractible loop in
Ω(L, L′), then

ω̂(u) =

∫
u∗ω = 0

Thus, we get a well-defined homomorphism
Iω : π1(Ω(L, L

′), γ0) → R.



If Iω vanishes, then ω̂ = dAω. In general, we have to work with the
universal cover Ω̃(L, L′) and get an “action functional”

Aω : Ω̃(L, L′) → R

given by

Aω(γ̃) =

∫
u∗ω

here u : [0, 1]× [0, 1] → M represents an element γ̃ ∈ Ω̃, i.e.
u(0, t) = γ0(t) and u(1, t) = γ(t).

To first approximation, Lagrangian Floer cohomology is the Morse
cohomology of this action functional.

For simplicity, let us concentrate in the special case when Iω
vanishes. For example, this holds when L, L′ are exact. This
means, that ω = dσ and restriction of σ to L and L′ are exact.



Let γs(t) be a variation of γ0 = γ and write u(s, t) = γs(t) and
ξ(t) = d

ds |s=0 γs(t).

A(γs)− A(γ0) =

∫
t∈[0,1],s′∈[0,s]

u∗ω

=

∫
t∈[0,1],s′∈[0,s]

ω(du/ds ′, du/dt)ds ′dt

=

∫ 1

0

∫ s′

0
ω(

dγs′

ds ′
, γ̇s′)ds

′dt

Critical points:

0 =
δA

δγ
=

d

ds
|s=0 A(γs) =

∫ 1

0
ω(ξ, γ̇)dt

for all ξ. Hence, we γ̇ = 0. In other words, γ is a constant path in
L ∩ L′.



Let J be a compatible complex structure, and define the metric
g(X ,Y ) = ω(X , JY ) on M. This gives an L2 inner product on
Ω(L, L′) as follows:

⟨ξ, η⟩ =
∫ 1

0
g(ξ, η)dt =

∫ 1

0
ω(ξ, Jη)

∫ 1

0
ω(ξ, γ̇)dt = dAγ(ξ) = ⟨ξ,∇Aγ⟩ =

∫ 1

0
ω(ξ, J∇Aγ)dt

Hence, ∇Aγ = −J γ̇.

Gradient flow lines: d
ds γs = ∇Aγs = −J γ̇

If u(s, t) = γs(t), then we get the J-holomorphic curve equation

∂u

∂s
+ J

∂u

∂t
= 0



Issues with Morse theory in ∞-dimensions

▶ We want to study gradient flow of A on Ω(L, L′) but
∇Aγ = −J γ̇ is not even tangent to Ω(L, L′) because −J γ̇(0)
and −J γ̇(1) need not be tangent to L and L′ resp. (The
problem is that the L2 inner product on Ω(L, L′) is not
complete. The gradient of a functional can be defined via
Riesz representation theorem which requires a complete
metric. Indeed −J γ̇ lies in the L2-completion of Tγ(Ω(L, L

′)).)
Floer’s solution is to directly study the J-holomorphic curve
equation as an elliptic PDE in finite-dimensions, rather than
an ODE in infinite dimensions. (non-equivalent!).

▶ HessA(ξ, η) = ⟨ξ,Dη⟩ where D = −J d
dt is the 1-d Dirac

operator. This has infinitely many positive and negative
eigenvalues. Hence, the Morse index is infinite.
Floer’s solution is to define a relative index depending on a
path between the critical points which is finite-dimensional can
be computed topologically via the Atiyah-Singer index theory.



Floer cohomology
For any field K (which we take Z2 for simplicity) define the field
extension

Λ = {
∞∑
i=0

aiT
ri |ai ∈ K, ri ∈ R, limi→∞ri = +∞}

This is called the Novikov field.
Suppose L, L′ transverse Lagrangians (compact, oriented, spin).
Define the vector space

CF (L, L′) =
⊕

p∈L∩L′
Λ · p

We define a differential

∂p =
∑

q∈L∩L′,β∈π2(M,L,L′),µ(β)=1

#M(p, q, β, J)Tω(β)q

M(p, q, β, J) is the moduli space of strips that we discuss next.



M̂(p, q, β, J) is the set of J-holomorphic strips

u : R× [0, 1] → M

∂u

∂s
+ J(u)

∂u

∂t
= 0,

u(s, 0) ∈ L, u(s, 1) ∈ L′

lims→+∞u(s, t) = p, lims→−∞u(s, t) = q

E (u) =

∫
u∗ω =

∫ ∫ ∣∣∣∣∂u∂s
∣∣∣∣2 dsdt < ∞

M̂(p, q, β, J) is the set of u satisfying the above conditions with
[u] = β ∈ π2(M, L, L′). Finally,

M(p, q, β, J) = M̂(p, q, β, J)/R

where R acts by r · u(s, t) = u(s + r , t).



Here are some basic properies of HF (L, L′).

▶ HF (L, L′) does not depend on the choice of J

▶ HF (ϕ(L), L′) ≃ HF (L, L′) for an Hamiltonian diffeomorphism
ϕ.

▶ HF (L, L′) = 0 if L and L′ are disjoint. (So Floer cohomology
is an obstruction Hamiltonian displaceability.)

▶ χ(HF ) = χ(CF ) = (−1)n(n+1)/2[L] · [L′] (if L, L′ are oriented).

▶ (Poincaré Duality) HF ∗(L, L′) ≃ HF n−∗(L′, L)∨



Example (draw a picture)

Take M = T ∗S1(≃ C∗)., L zero section, L′ as drawn.

CF (L, L′) = Λ · p ⊕ Λ · q

∂p = (Tω(u) − Tω(v))q

So, if ω(u) = ω(v), then ∂ = 0, and HF (L, L′) = Λ⊕2 = H∗(S1; Λ).

If ω(u) ̸= ω(v), HF (L, L′) = 0.

Note that if ω(u) ̸= ω(v) we can find a Hamiltonian isotopy ϕH

such that L ∩ ϕH(L
′) = ∅.

If ω(u) = ω(v) then L and L′ are Hamiltonian isotopic.



M(p, q, β, J)

In general, there are serious difficulties in making the set
M(p, q, β, J) a “moduli space” i.e. equip it with some kind of
manifold-like structure (and compactify) so that we can “count”
the number of points in a meaningful way that does not depend on
the choices.

There are three main technical steps in making this count rigorous.

▶ Transversality

▶ Compactness

▶ Gluing



Transversality
Let B be Banach manifold of maps u : R× [0, 1] → M, [u] = β
with boundary conditions and asymptotic conditions as before.
Let E Banach vector bundle over B with fiber over u given by
Ω0,1(R× [0, 1], u∗TM)

∂J : B → E

is a section just that

M(p, q, β, J) = ∂
−1
J (0)

∂J is Fredholm i.e its linearization D = D∂J
is a Fredholm

operator. Its index

Ind(D∂J
) = dim kerD − dim cokerD = µ(β)

is the expected dimension of the moduli space (Maslov index).
For a generic (domain dependent J = Jt), the operator D is
surjective i.e. ∂J is transverse to the zero section. Thus, we get a
manifold of dimension µ(β).



Gromov compactness

Consider a sequence Jn of almost complex structures on M which
converge uniformly to J∞, and (Cn, jn) a sequence of Riemann
surface with boundary of fixed topological type (that means, there
exist parametrizations δn : (Σ, ∂Σ) → (Cn, jn) from a fixed real
surface Σ).

Let un : Cn → M a sequence of (jn, Jn) holomorphic curves.

Theorem. Suppose that the energy E (un) < ∞ is bounded
uniformly. Then there exists a subsequence which converges, up to
reparametrization, to a stable map, that is a nodal tree (C∞, j∞)
of (j∞, J∞) holomorphic curves.



Draw a picture of a stable map.

Besides possible degeneration of the domain to a nodal curve, the
main issue is bubbling of spheres.
Let un : CP1 → CP1 × CP1 given by

(x : y) → (x : y), (ny : x)

In affine chart t = y/x , we have t → (t, 1
nt ). Then away from the

origin, we have uniform convergence to t → (t, 0). So, the limit
curve seems to be one axis (missing the other axis).
But, if we reparametrize s = nt, then get s → ( sn ,

1
s ). Hence, we

get uniform convergence away from t = ∞ to s → (0, 1s ) (the
other axis).

The main point is that the bubbling regions are where
sup|dun| → ∞. In these regions, we rescale the domain
vn(z) = un(z

0
n + ϵnz) for ϵn → 0 suitably chosen. A subsequence of

vn converges to a map v∞ : C → X which completes to a map
from CP1 by removable singularity theorem. This latter map is
called a “bubble”.



There is a version of Gromov compactness for curves with
boundary on Lagrangians. We now also get disk bubbles.
Example: Let L0 be real axis, and L1 the unit circle. View
R× [0, 1] via the conformally equivalent
{z ∈ C : Im(z) > 0, |z | < 1}, we can consider the map

ua(z) =
z2 + a

1 + az2

for some a ∈ (−1, 1).

Draw the two ends of this moduli space. a → −1 broken strip,
a → 1 constant strip and a disk bubble.



Proof of d2 = 0

Let’s first recall how this goes in Morse (co)homology in the
finite-dimensional setting.

In Floer theory, the proof is similar to that for Morse cohomology.

Fix p, q and look and 1-dimensional moduli space of (index 2)
strips M(p, q;β, J) between p, q. By Gromov compactness this
can be compactified to M(p, q;β, J) and boundary terms are one
of the following:

▶ Broken strips connecting p to q

▶ Configuration with interior sphere bubble.

▶ Configuration with boundary disk bubble.



Gluing

By topological assumption, there are no disc or sphere bubbles.
The gluing theorem says that every broken strip is locally the limit
of a unique family of index 2 strips.

Here is the statement of the gluing result

∂M(p, q;β, J) =
⊔

r∈L∩L′
β′+β′′=β

µ(β′)=µ(β′′)=1

(
M(p, q;β′, J)×M(q, r ;β′′, J)

)

Now d2 = 0 follows as before by the miraculously trivial fact the
number of points in the boundary of a 1-manifold is always even!



self Floer cohomology

For HF (L, L), one way to define it is via considering L′ = ϕH(L) for
some Hamiltonian H, and use HF (L, ϕH(L)).

There is also an alternative ”Morse-Bott” model which often is
easier to compute. One takes CF ∗(L, L) = C ∗(L) singular
cohomology complex, and define

∂Floer = ∂sing +
∑

β ̸=0,β∈π2(M,L)

ev−1∗(M0,2(β) ∩ ev∗1 (C ))Tω(β)

M0,2 is moduli space of holomorphic disks with boundary on L and
two marked points on its boundary. (draw a picture!).



Product structures

Let L0, L1, L2 be three Lagrangians which intersect tranversely and
do not bound any holomorphic disks. We have a product
opereation

CF (L1, L2)⊗ CF (L0, L1) → CF (L0, L2)



Higher products

More generally, given L0, L1, . . . Ln, we can define a higher product

mn : CF (Ln−1, Ln)⊗CF (Ln−2, Ln−1)⊗ . . .CF (L0, L1) → CF (L0, Ln)

by counting holomorphic (n + 1)-gons. (For n > 2, the domain has
moduli, so it is important to understand this moduli space which
can be parametrized by Stasheff-Tamari polytopes).

All of these together satisfy the A∞-equations∑
m,n

±md−m+1(ad , . . . , an+m+1,mm(an+m, . . . , an+1), an, . . . a1) = 0.



Picture proof of A∞ relations



Fukaya categories

Given a symplectic manifold M, one defines an A∞ category whose
objects are Lagrangian submanifolds, morphisms are given by Floer
complexes and the product operations are defined by
J-holomorphic polygon counts. One then considers a formal
triangulated enveloppe of this (complexes of Lagrangians) and calls
that the Fukaya category of M, F(M). There are various flavours
of Fukaya categories associated to different setting such as
compact Fukaya category, wrapped Fukaya category, Fukaya-Seidel
category..etc. All of these involve Lagrangian submanifolds and
counts of holomorphic polygons between them. Besides being a
powerful invariant of the underlying symplectic structure on M,
F(M) appears prominently in the homological mirror symmetry
conjecture.



If there is more time ...
make an impromptu on mirror symmetry
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