# The ordinary double point

A beautiful mix of algebraic and symplectic geometry

## Smoothness

Varieties are generically smooth.

We expect the "generic" variety to be globally smooth. (If it has enough deformations, so it can be deformed to be "generic".)

E.g. consider hypersurfaces  $\{f = 0\} \subset P$ . (*P* some smooth ambient space, eg  $\mathbb{C}^{n+1}$  or  $\mathbb{P}^{n+1}$ .)

Singular points are where f = 0 = df.

- Locally  $f = 0 = \partial_i f$ ,  $i = 1, \dots, n+1$
- (n+2) equations in (n+1) unknowns
- $\Rightarrow$  expect a (-1)-dimensional space of solutions.

I.e. no solutions generically (  $\implies$  {f = 0} smooth) but finitely many in a 1-parameter family.

"Expect" this for more general varieties too.

## Jacobian criterion

At 
$$p \in \{f = 0\}$$
 with  $df|_p \neq 0$ ,  
 $f(x) = f(p) + df|_p(x-p) + O(|x-p|^2) \sim df|_p(x-p)$ 

and the implicit function theorem says that, locally analytically,



Therefore  $\{f = 0\}$  is smooth near p.

### Ordinary double points

Next least bad case:  $f(p) = 0 = df|_p$  but second derivative matrix

$$\left(\left.\frac{\partial f}{\partial x_i \partial x_j}\right|_p\right)_{i,j=1}^{n+1}$$

non-degenerate. Equivalently, in Taylor expansion about p,

$$f(x) = \sum_{i,j=1}^{n+1} Q_{ij} x_i x_j + O(|x|^3)$$

the quadratic form Q is non-degenerate.

Equivalently, locally analytically,  $f(x) = \sum_{i=1}^{n+1} x_i^2$ .

We say that any variety Y (need not be a hypersurface!) has an ordinary double point (ODP/node) at p if *locally analytically* a neighbourhood of  $p \in Y$  looks like  $0 \in \{\sum_{i=1}^{n+1} x_i^2 = 0\}$ .

## Examples and 1-parameter families

**Ex:** Show in 2-dimensions (only!) the ODP is a quotient singularity  $\mathbb{C}^2/(\mathbb{Z}/2)$ .

**Ex:** Draw  $\{y^2 = x^2(1-x)\} \subset \mathbb{C}^2$  and  $\{y^2 = x^2\} \subset \mathbb{C}^2$ . Show both have ODPs at (0,0) (so are analytically equivalent there). Show they are not Zariski locally equivalent.

**Ex:** Show  $\{f = 0\} \subset \mathbb{C}^{n+1}$  has an ODP at  $p \in \{f = 0\} \iff df$  has a simple zero at  $p \in \mathbb{C}^{n+1}$ .

**Ex:** Compute the number of ODPs (simple zeros of (f, df)) of a generic 1-parameter family of hypersurfaces  $\{f + tg = 0\}, t \in \mathbb{P}^1$  (of degree d in  $\mathbb{P}^{n+1}$  say).

# Local picture of smoothing

Hypersurface  $X_0 \subset P$  given locally by f = 0.



### Local model of smoothing

 $f:\mathbb{C}^{n+1}\longrightarrow\mathbb{C}, \quad f(x)=\sum_{i=1}^{n+1}x_i^2$  has fibre over t given by

$$\{f = t\} = \left\{\sum_{i=1}^{n+1} x_i^2 = t\right\}$$

Write  $x_i = a_i + ib_i$  (i.e.  $\mathbb{C}_x^{n+1} = \mathbb{R}_a^{n+1} \oplus i\mathbb{R}_b^{n+1}$ ), suppose  $t \in (0, \infty)$  (otherwise rotate real and imaginary parts by writing  $x_i = \sqrt{t}(a_i + ib_i)$ ).

Then taking real and imaginary parts in  $\sum_{i=1}^{n+1} x_i^2 = t$  gives

$$\sum_{i=1}^{n+1} (a_i^2 - b_i^2) = t \quad \text{and} \quad \sum_{i=1}^{n+1} a_i b_i = 0$$
$$\iff |\mathbf{a}|^2 = |\mathbf{b}|^2 + t \quad \text{and} \quad \mathbf{a} \cdot \mathbf{b} = 0.$$

So  $\left(\frac{\mathbf{a}}{|\mathbf{a}|}, |\mathbf{a}|\mathbf{b}\right)$  defines a point of  $TS^n \cong T^*S^n$ .

#### $T^*S^n$

**Ex:** The above map  $\{\sum x_i^2 = t\} \xrightarrow{\sim} T^*S^n$  is a **symplectomorphism**.

Define  $L \cong S^n$  to be the zero section  $\mathbf{b} = 0$ , I.e. the **real slice**  $x_i \in \mathbb{R} \ \forall i \text{ of } \{\sum x_i^2 = t\}$  $(x_i \in \sqrt{t}\mathbb{R} \text{ in general case when } t \notin (0, \infty))$ 

**Ex:** Show *L* is Lagrangian by using  $x_i \mapsto \bar{x}_i$  by checking this takes  $\omega \mapsto -\omega$ .

*L* is called the vanishing cycle of the ODP: it is what flows to/collapses down to the origin under parallel transport of fibre (along any path to t = 0) of the **symplectic connection** on the fibres of  $\sum x_i^2 : \mathbb{C}^{n+1} \to \mathbb{C}$  (away from the origin).

# Symplectic connection



**Ex:** Preserves  $\omega|_{X_t}$  – fibres  $X_t$  symplectomorphic!

Family of Kähler manifolds not locally trivial, but **is** locally trivial as a bundle of symplectic manifolds (Seidel).

**Ex:** *L* is what flows to  $0 \in \mathbb{C}^{n+1}$  under this connection along a path in base to  $0 \in \mathbb{C}$ . Use to give another proof that *L* is Lagrangian.

### Curvature

Symplectic connection not flat. Holonomy is a symplectomorphism of the fibre. Curvature is 2-form with values in the hamiltonian vector fields on the fibre.

Parallel transport around an infinitesimal square with sides  $v, w \in T_pC$  is infinitesimal motion down the vector field  $v_h$  on fibre  $X_p$  with hamiltonian

 $h_{\mathbf{v},\mathbf{w}} = \omega(\tilde{\mathbf{v}},\tilde{\mathbf{w}}),$ 

i.e.  $v_h \lrcorner \omega = dh$ .pause

So isotopic loops give hamiltonian isotopic monodromies.

Global monodromy  $\pi_1(\text{base } C) \to \text{Aut}(X_t, \omega) := \frac{\text{Symp}(X_t, \omega)}{\text{Ham}(X_t, \omega)}.$ 

# Monodromy

Monodromy around path winding once round  $0 \in C$ ?

For very small loop get identity  $(h \sim \text{const})$  far away from ODP in  $\mathcal{X}$ . So monodromy transformation  $f^{-1}(t) \circlearrowleft$  concentrated near vanishing cycle *L*. Called Dehn twist.



Action on homology Picard-Lefschetz reflection

$$T_L: H_*(X_t) \longrightarrow H_*(X_t)$$
  
 $a \longmapsto a + (a.L)[L]$ 

# Local model

Local model on

 $T^*S^n = \{(\mathbf{a}, \mathbf{b}) \in \mathbb{R}^n \oplus (\mathbb{R}^n)^* \colon |\mathbf{a}| = 1, \ \langle \mathbf{b}, \mathbf{a} \rangle = 0\}$ 

is time- $\pi$  hamiltonian flow of  $|\mathbf{b}|$ .

(Discontinuous over zero section  $\mathbf{b} = 0$ , but continuous after  $t = \pi$ .)

Equivalently, normalised geodesic flow on

 $TS^n = \{ (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^n \oplus \mathbb{R}^n \colon |\mathbf{a}| = 1, \ \mathbf{b} \cdot \mathbf{a} = 0 \}$ 

along horizontal lift of  $\mathbf{b}/|\mathbf{b}|.$ 

*n* = 0 **case**:



## Families of affine quadrics

Fix degree d polynomial p(t).

Get *n*-dimensional  $X_p := \left\{ \sum_{i=1}^n x_i^2 = p(t) \right\} \subset \mathbb{C}_x^n \times \mathbb{C}_t.$ 

Fibre over  $t \in \mathbb{C}_t$  is affine quadric,

•  $T^*S^{n-1}$  if  $p(t) \neq 0$ ,

• quadric cone (with ODP) if p(t) = 0.

Get Lagrangian  $S^n$ s fibred over paths in  $\mathbb{C}$  between zeros of p.



# Example

E.g.  $p(t) = \epsilon - t^2$  gives *n*-dimensional quadric  $\{\sum x_i^2 + t^2 = \epsilon\}$  fibres by (n-1)-dimensional quadrics.

Above construction gives the vanishing cycle  $L_{\epsilon} \cong S^n$  of the ODP at  $\epsilon \to 0$ .



Get Dehn twist monodromy by rotating  $\pm \sqrt{\epsilon}$  about each other. Ex: General case gives representation  $B_d \rightarrow \operatorname{Aut}(X_p, \omega)$ .

## Resolution

**Ex:** Blow up of  $\{\sum x_i^2 = 0\} \subset \mathbb{C}^{n+1}$  is the total space of  $\mathcal{O}_Q(-1)$ , with exceptional divisor Q the quadric  $\{\sum x_i^2 = 0\} \subset \mathbb{P}^n$ .

**Ex:** In dimension n = 2 we get  $\mathcal{O}_{\mathbb{P}^1}(-2) \cong T^*\mathbb{P}^1$  as the resolution.



## Dimension 3

In dimension n = 3 we have  $Q \cong \mathbb{P}^1 \times \mathbb{P}^1$ .

**Ex:** Prove this by rewriting  $x_1^2 + \ldots + x_4^2 = ut - vw$ . Reprove by embedding

$$\mathbb{P}^1 imes \mathbb{P}^1 \ \longrightarrow \ \mathbb{P}ig( \Gamma(\mathcal{O}_{\mathbb{P}^1 imes \mathbb{P}^1}(1,1) ig) \ \cong \ \mathbb{P}^3$$

by the sections  $u := x_1x_2$ ,  $t := y_1y_2$ ,  $v := x_1y_2$ ,  $w := x_2y_1$ .

Can then blow down the full blow up  $\mathcal{O}_Q(-1)$  along either ruling to give another resolution with exceptional locus  $\mathbb{P}^1$ . (Codimension two! "Small resolution").

More concretely can blow up  $X_0 := \{ut = vw\}$  in the Weil divisor (u = 0 = v) to give  $X^+$ . (Or blowing up in (u = 0 = w) gives  $X^-$ .)

# Small resolution of $X_0 = \{ut = vw\}$

Letting U, V denote the homogeneous coordinates on  $\mathbb{P}^1$  we get

$$X^+ := \operatorname{Bl}_{(u,v)} X_0 = \left\{ uV = vU, \ wV = tU \right\} \subset X_0 \times \mathbb{P}^1.$$

**Ex:** Show this is what the Proj  $\bigoplus_{n\geq 0} (u, v)^n$  construction gives. **Ex:** Use this to show  $X^+$  is the total space of  $\mathcal{O}_{\mathbb{P}^1}(-1)^{\oplus 2}$ . That is, we plot the graph of

$$\frac{u}{v} = \frac{w}{t} : X_0 \setminus \{0\} \longrightarrow \mathbb{P}^1$$

and take its closure. Away from 0 at least one of t, u, v, w is  $\neq 0$  so we get a unique point  $[\lambda : \mu] \in \mathbb{P}^1$ , so  $X^+ \to X_0$  is an isomorphism. Over 0 we get exceptional fibre  $\mathbb{P}^1$ .

(Note for a general algebraic  $X_0$  with ODP there may be no algebraic/global Weil divisor looking like (u = 0 = v) locally analytically, so  $X^+$  may not be algebraic.)

The two small resolutions of  $X_0 = \{ut = vw\}$ 

$$X^+ = \mathsf{Bl}_{(u,v)} X_0$$
 and  $X^- = \mathsf{Bl}_{(u,w)} X_0$  are **not** isomorphic over  $X_0$ .

**Ex:** The proper transform of the plane  $\{u = 0 = v\} \cong \mathbb{C}^2_{t,w}$  is again  $\mathbb{C}^2$  in  $X^+$ , whereas in  $X^-$  it is  $Bl_0 \mathbb{C}^2$ .



# 3 blow ups of $X_0$

So  $X^+$  and  $X^-$  are only *birational* blow ups of  $X_0 = \{ut = vw\}$ . (Atiyah flop).

Blowing either up in their exceptional curve  $\mathbb{P}^1$  gives the full blow up  $\widehat{X} = \mathsf{Bl}_0 X_0$ .



#### Link

The link of the 3-fold ODP is  $S^3 \times S^2$ : the cone over  $S^3 \times S^2$  is  $X_0$ . The cone over  $S^2$  (times by  $S^3$ ) is the smoothing  $T^*S^3$ . The cone over  $S^3$  (times by  $S^2$ ) is a small resolution  $X^+$ .

Using the Hopf fibration  $S^3 \rightarrow S^2$  to express it as  $S^3 \times S^2$  in a different way gives the other small resolution  $X^-$ .

The cone over the  $S^1$  fibre of  $S^3 \times S^2 \to \mathbb{P}^1 \times \mathbb{P}^1$  is the full resolution  $\widehat{X}$ .



# Mirror symmetry

Mirror symmetry for Calabi-Yau 3-folds with ODPs tends to give other Calabi-Yau 3-folds with ODPs.



Another local model

**Ex:** Let  $X_0$  be the blow up  $\mathbb{C}^3$  in  $\{xy = 0 = z\}$ . Show it has one ODP.

Instead blowing up one branch  $\{x = 0 = z\}$  then blowing up the **proper transform** of the other branch  $\{y = 0 = z\}$  gives  $X^+$ .

Reversing the order gives  $X^-$ .



# Application: Hironaka's example...

Blow up 2 curves intersecting transversally at 2 points p, q. Do the  $X^+$  operation at p but the  $X^-$  operation at q.



## ... is analytic, not projective



In lower ribbon  $a_p \sim C_1$  (over p) and  $C_1 \sim a_q + b_q$  (over q). In upper ribbon  $a_p + b_p \sim C_2$  (over p) and  $C_2 \sim a_q$  (over q). Subtracting, in the union of the two we get  $C_2 - C_1 \sim b_p \sim -b_q$ .  $\implies$  non-Kähler, non-projective.

## Hironaka-style exercise

**Ex:** Do similar with the blow up of a smooth 3-fold in the following curve, treating the two branches differently.



What do you get?

## Another model: matrices

The space of 2 
$$\times$$
 2 matrices  $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$  of rank  $\leq$  1 is the 3-fold ODP:

$$\{ad-bc=0\} = X_0$$

Such matrices can be written  $v \otimes f$ ,  $v \in \mathbb{C}^2$ ,  $f \in (\mathbb{C}^2)^*$ .

**Ex:** Show this makes  $X_0$  into the GIT quotient of  $\mathbb{C}^2 \oplus (\mathbb{C}^2)^*$  by the  $\mathbb{C}^*$  action with weight 1 on  $\mathbb{C}^2$  (and so weight -1 on  $(\mathbb{C}^2)^*$ ).

**Ex:** Change linearisation to produce  $X^+$  by remembering  $[v] \in \mathbb{P}^1$ . (Here  $X^+$  will be  $\mathcal{O}(-1) \otimes (\mathbb{C}^2)^* \to \mathbb{P}(\mathbb{C}^2)$ .)

Or  $X^-$  by remembering  $[f] \in (\mathbb{P}^1)^*$ . (Here  $X^-$  will be  $\mathcal{O}(-1) \otimes \mathbb{C}^2 \to \mathbb{P}(\mathbb{C}^2)^*$ .)

To get  $\widehat{X}$  by remembering  $([v], [f]) \in \mathbb{P}^1 \times (\mathbb{P}^1)^*$  we have to quotient  $\mathbb{C}^5$  by two copies of  $\mathbb{C}^*$  acting with weights (1, 1, 0, 0, -1) and (0, 0, 1, 1, -1).

### Global version

Given a map of rank 2 vector bundles  $\phi : E \to F$  on a 4-fold Y we get a divisor  $X_0 \subset Y$  where det  $\phi \in \Gamma(\Lambda^2 E^* \otimes \Lambda^2 F)$  vanishes.

#### Generically smooth, ODPs where $\phi = 0$ .

(For appropriately generic  $\phi$ . Graph of  $\phi: Y \to \text{Hom}(E, F)$  should be transverse to the rank 0 and 1 loci in this bundle.)

**Ex:** Show how to define " $\mathbb{P}(\ker \phi) \to Y$ " as zeros inside  $\mathbb{P}(E) \xrightarrow{\pi} X_0$  of composition

$$\mathcal{O}(-1) \ \longrightarrow \ \pi^* E \ \stackrel{\pi}{\longrightarrow} \ \pi^* F.$$

Show fibre of  $\mathbb{P}(\ker \phi) \to Y$  is empty over  $Y \setminus X_0$ , a point over  $X_0 \setminus \{\text{ODPs}\}$ , and  $\mathbb{P}^1$  fibre over ODPs. Identify it locally with  $X^+$ .

**Ex:** Replace ker  $\phi$  with ker  $\phi^*$  to get  $\mathbb{P}(\operatorname{coker} \phi)^*$  as  $X^-$ .

#### Exercises

**Ex:** Show double cover  $X \rightarrow Y$  of a smooth Y, branched over a divisor  $D \subset Y$  is smooth if D is smooth, and has ODPs at any ODPs of D.

How do the resolutions match up?

#### **Ex:** If $X \to \mathbb{P}^1$ and $Y \to \mathbb{P}^1$ are Lefschetz pencils

(generically smooth maps, but finite number have ODPs with local model of map  $(x_i)_{i=1}^{\dim X} \mapsto \sum_{i=1}^{\dim X} x_i^2$ ) show  $X \times_{\mathbb{P}^1} Y \to \mathbb{P}^1$  is a Lefschetz pencil if and only if the two discriminant loci in  $\mathbb{P}^1$  are disjoint.

Now move two points of the discriminant locus in  $\mathbb{P}^1$  together. Show the fibre product acquires an ODP. What is the vanishing cycle?

#### Simultaneous resolution

Consider  $\mathbb{C}^3$  to be a family of affine quadrics over  $\mathbb{C}_t$  by  $(x, y, z) \mapsto t := x^2 + y^2 + z^2$ . Central fibre t = 0 is surface ODP.

**Ex:** Why is there no simultaneous resolution of this family? (I.e.  $Y \to \mathbb{C}^3$  which on each fibre  $Y_t \mapsto \{x^2 + y^2 + z^2 = t\}$  is an isomorphism if  $t \neq 0$  and the resolution if t = 0.)

**Ex:** Now pull back the family to the  $t \mapsto t^2$  double cover of  $\mathbb{C}_t$ . ("Basechange by  $t \mapsto t^{2"}$ .) Show there **is** a simultaneous resolution now.

What does this tell you about the monodromy?

**Ex:** If you're stuck, first replace  $\mathbb{C}^3 \xrightarrow{x^2+y^2+z^2} \mathbb{C}$  by  $\mathbb{C} \xrightarrow{x^2} \mathbb{C}$  and do the exercise now.